Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drought induces alterations in the stomatal development program in Populus.

Identifieur interne : 002B22 ( Main/Exploration ); précédent : 002B21; suivant : 002B23

Drought induces alterations in the stomatal development program in Populus.

Auteurs : Erin T. Hamanishi [Canada] ; Barb R. Thomas ; Malcolm M. Campbell

Source :

RBID : pubmed:22760471

Descripteurs français

English descriptors

Abstract

Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.

DOI: 10.1093/jxb/ers177
PubMed: 22760471
PubMed Central: PMC3427991


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drought induces alterations in the stomatal development program in Populus.</title>
<author>
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22760471</idno>
<idno type="pmid">22760471</idno>
<idno type="doi">10.1093/jxb/ers177</idno>
<idno type="pmc">PMC3427991</idno>
<idno type="wicri:Area/Main/Corpus">002975</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002975</idno>
<idno type="wicri:Area/Main/Curation">002975</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002975</idno>
<idno type="wicri:Area/Main/Exploration">002975</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drought induces alterations in the stomatal development program in Populus.</title>
<author>
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Genotype (MeSH)</term>
<term>Plant Epidermis (genetics)</term>
<term>Plant Epidermis (growth & development)</term>
<term>Plant Epidermis (physiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stomata (genetics)</term>
<term>Plant Stomata (growth & development)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Stress, Physiological (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN messager (génétique)</term>
<term>Eau (physiologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Génotype (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Stomates de plante (croissance et développement)</term>
<term>Stomates de plante (génétique)</term>
<term>Stomates de plante (physiologie)</term>
<term>Stress physiologique (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Épiderme végétal (croissance et développement)</term>
<term>Épiderme végétal (génétique)</term>
<term>Épiderme végétal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Plant Epidermis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Epidermis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN messager</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stomates de plante</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
<term>Transpiration des plantes</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Epidermis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Plant Transpiration</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Genotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génotype</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22760471</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Drought induces alterations in the stomatal development program in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>4959-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ers177</ELocationID>
<Abstract>
<AbstractText>Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hamanishi</LastName>
<ForeName>Erin T</ForeName>
<Initials>ET</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Barb R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Malcolm M</ForeName>
<Initials>MM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019441" MajorTopicYN="N">Plant Epidermis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22760471</ArticleId>
<ArticleId IdType="pii">ers177</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ers177</ArticleId>
<ArticleId IdType="pmc">PMC3427991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2000 May 1;14(9):1119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 10;411(6834):154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11346781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 May 31;296(5573):1697-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1527-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Aug;22(12):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 4;304(5676):1494-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Symp Soc Exp Biol. 1977;31:471-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">756635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 8;309(5732):290-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(2):373-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2493-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 1;445(7127):537-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 1;445(7127):501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17201685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jul 15;21(14):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17639078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18641265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(12):3317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jun;50(6):1019-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19435754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):241-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Feb;13(1):90-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19781980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2011 Mar-Apr;13(2):182-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21410874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Jul;108(1):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21586531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Jan 15;26(2):126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 7;408(6813):713-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22760471
   |texte=   Drought induces alterations in the stomatal development program in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22760471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020